Screen Shot 2013-01-06 at 3.16.00 PM
This slideshow above comes from scans of the postcards sent to us from the good folks at Postcard Underground.

This month, we began receiving strange – but supportive – postcards from people around the country. As they came in, it became apparent, they were all part of an action from the legendary Postcard Underground movement.

With kind words, these wonderful messages gave the team the needed spiritual inspiration to help carry us through our race to the end of the year.

Each of the messages were received just after we posted both a blog post and a video on the project shot and edited by our friends at Undercurrent Productions, who supposed the video may have caught some fire online.

You can read their post about the postcards here.

Take a look at the slideshow, and as always, many thanks for your support of our work.

More to come.

Ed.

Editor’s note: This story was original posted as an Ocean Arks “Annals of Earth” report.

Close to a decade ago we met a remarkable man by the name of Eugene Bernat or Gino. Gino had acquired twelve acres of land than had been an old mill site along the Blackstone River Corridor in central Massachusetts.

The area was the birthplace of the American industrial revolution.

The river flows from the town of Worcester to Providence, Rhode Island. In the industrial era flow powered mills lined its banks. Materials were transported along parallel canals. Gino’s land had been the site of the Fisherville Mill, which had burned down in the latter part of the twentieth century in what the former Grafton Fire Chief described as a horrendous blaze.

The remains of the ruins, mostly rubble, occupied a remarkable piece of land.

To the north the river widens into a large, shallow, slow moving lake‐like area. It is surrounded by trees and marsh, is bounded on the east by a dam and has a feeling of wildness. The river drops considerably at the damn site, wrapping itself around the area before heading south towards the sea.

Gino had been dreaming of a twenty‐first century village for the site.

He wanted the project to be green and to have a very low environmental impact. He makes his living converting waste materials to valuable new products and has found waste derived substitutes for petroleum‐based asphalt used for paving.

He also has a long time interest in creative management of organic wastes such as large‐scale production of compost for agriculture. Knowing the former Grafton mills had given birth to the first industrial revolution, Gino wanted his project to be a catalyst for a second environmental revolution with technologies and techniques for managing resources adapted to an ecological age.

When we toured the site with Gino and listened to his vision and we were impressed with his account of the hurdles ahead.

For all his confidence they seemed more than enough challenges for any one man. The site was contaminated with toxic materials. A contaminant of real concern was number six or Bunker C oil that had been stored in tanks that had subsequently ruptured. Bunker C oil is a toxic, tar‐like residual material or sludge from the manufacture of petroleum products.

It is used as a fuel in ships and in electrical power plants. The leaking oil was contaminating the ground water, seeping into the canals and ultimately into the Blackstone River. Gino hoped our living technologies in the form of eco‐machines could decontaminate the heavy oil, which prevented more positive development.

We explained that we had never treated Bunker C oil but had developed eco‐machines that broke down such chemicals as DDT and other noxious pesticides, which are hard to decontaminate, but welcomed a chance to test our technologies on such heavy oils.

After several years of political and financial negotiations Gino located the funds to build a pilot facility to test whether an eco‐machine could treat Bunker C oils. We subsequently did so in a greenhouse owned by the Woods Hole Oceanographic Institution overlooking Nantucket Sound and Martha’s Vineyard.

We built our pilot Eco‐machine in the fall of 2006.

It was made up of two parallel treatment systems. Each had four ecological components through which the contaminated water and oily sediments flowed. The total volume of the two systems was approximately four hundred gallons.

The first three components were housed in clear‐sided tanks that were penetrable by sunlight.

Each tank contained a different ecology.

  • The first housed algae communities which we grew on screens.
  • The second tank had specially designed rafts that supported marsh plants on their surface.
  • Their roots grew deep into the water column and were colonized by a diversity of microbial life.
  • The third tank as an open water tank that supported microalgae, plankton, and fish.
  • The fourth and final component was housed in dark plastic chambers contained fungi in the form of mushrooms.

The fine networks of mycelia produce enzymes known to degrade many compounds, including we hoped, number six oil. The fungal component acted as a trickling filter. No standing water was allowed to accumulate.

After the fourth stage the liquid was recycled back to the beginning.

It ran on a continuous loop. We had collected the contained organisms from a half a dozen aquatic environments ranging from fresh water streams to salt marshes. We introduced thousands of species, which quickly began to self‐ select, self‐design and self‐organize into unique ecological systems adapted to the waste stream. We completed the inoculation period in December of 2006 and operated the pilot Eco‐machine from January till April 2007.

The system proved effective in treating the heavy oil. We made chemical measurements of Total Organic Carbon (TOC) and Total Petroleum Hydrocarbon (TPH) from the canal sediments, from the water itself and from the Eco‐machine.

In mid December we extracted ten pounds of sediments from the canal and split them equally between the eco‐machine’s two treatment systems.

From January through March we added close to six hundred gallons of canal water. Despite our continuing addition of contaminated canal water, by the beginning of April over 90% of the Total Petroleum Hydrocarbons had been removed from the water.

The volume of the oily sediments had been reduced 57% in one of the treatment lines and 89% in the other. Just under 50% or between 40% and 56% were reduced in the remaining sediments Total Petroleum Hydrocarbons (TPH). The pouch snails (Physa gyrina),
which we had introduced, were eating the oily sediments attached to the walls of the tanks.

By the time the experiment ended in early April of 2007we were beginning to feel confident that ecologically engineered systems that employing representative species of all of the kingdoms of life could tackle the decontamination of petroleum hydrocarbons, including such heavy oils as Bunker C. We then felt ready to work directly on the canal but it was not until the fall of 2011 that we finally got the chance to try.

With support from the US Environmental Protection Agency, the Town of Grafton initiated a number of environmental cleanup efforts for the Fisherville Mill site and the adjacent canal. The canal was dredged and contaminated spoils were trucked off site. In addition, an attempt was made to inject butane into the ground water under the site to make the heavy oils more susceptible to biodegradation.

The goal of both projects was to reduce the overall contamination loads in the area. It was a prudent move on the part of the town.

Our part came later. Gino had donated land adjacent the canal to the town Grafton where a beautiful public park had been created. It quickly became a favorite spot of local people who use it for picnicking, sports and public events. The site for our Eco‐machine and canal Restorer technologies was along the western edge of the park and is a great location offering public access and visibility for our work.

Schematic of the facility: Eco‐machine in greenhouse, Restorer to the right in the canal, and the bottom bio‐filter at the top Center of the image

Jonathan Todd led the design team. Contractor David Sember was in charge of the construction phase of the project.

For the Grafton project we decided to create a hybrid technology specific to the site. On the canal itself we installed a floating Restorer of the type we developed for the Baima Canal in Fuzhou, China and for a slaughterhouse waste treatment lagoon in Berlin, Maryland. The Restorer’s role in Grafton involves circulating contaminated canal water in and around the massive root complexes of the higher plants being grown within. Its purpose is to provide habitats for beneficial organisms that improve water quality.

The Restorer on the canal: Note the oil sheen on the water

We placed the second technology on the bottom of the canal. It included a bio‐filter through which sediments and canal water circulate before flowing to the Eco‐machine and the floating Restorer.

We originally developed this bottom technology for an aquaculture facility at the Four Seasons Resort in Kona, Hawaii. Because of the Restorer the resort’s saltwater pond produces large populations of oysters, shrimp and marine fishes for the resort’s kitchens. The main purpose of the bottom bio‐filter was to support biological activity in a low‐to‐zero oxygen environment and to convert nitrates in the water to harmless nitrogen gas. The bio‐filter also degrades organic compounds in the sediments and adjacent waters.

The third technology for Grafton is an Eco‐machine on the banks of the canal. It is housed in a greenhouse and includes boxes for mushroom cultivation and a series of clear sided tanks The water is pumped from the biofilter and then trickles through the dark, enclosed cells that contain fungi with rapidly growing mycelial networks. From the fungi system the canal water flows into a series of translucent tanks that house complex solar based ecosystems.

The Eco‐Machine with the fungi system in the dark chambers on the right

The overall purpose of the Eco‐machine is to provide large numbers of beneficial organisms to the canal on a year round basis. It functions as an ecological incubator providing a sufficient density of life forms from the various kingdoms of life to digest the oils and transform the ecology of the canal to a healthier state. Water from the Grafton Eco‐machine flows back to the Restorer zone in the canal. The concept of an ecological incubator is new and quite radical, but its potential for water quality improvement is very real.

The system was built over this past spring.

Its configuration is illustrated in the previous schematic. The facility was inoculated and started up at the first of June 2012 when we began circulating canal water through the system. On June 14th, which was Flag Day, there was an opening ceremony complete with a raising of the flag, speeches by local politicians and town officials and a brass band.

The New England Regional Administrator of the US EPA, and the Commissioner of the Massachusetts Department of Environmental Protection were also in attendance. The indicated interest and excitement during their tour of the facility. By then the water in the Eco‐machine had been completely replaced by water from the canal.

We were pleased with opening day and delighted by the beauty of the Eco‐machine and the floating Restorer on the canal.

Overview of the canal, the Restorer and the Eco‐machine facility

The following day we collected water and sediments samples from the canal and the Eco‐machine. They were taken to a lab at Brown University in Providence that specializes in the measurement of petroleum hydrocarbons.

It was over four weeks before we got the first results. They were promising. The level of petroleum hydrocarbons in the water above the bio‐filter, being the first step in the cycle, was
42,672 nanograms per liter (ng/l). A nanogram is a very small unit of measure, a billionth of a gram, but it is the conventional unit of measure for studying petroleum hydrocarbons in the environment.

What is important here is the percent reduction of the oils. By the end of the eco‐machine the levels had dropped to 5,385n/l representing a reduction of 87%.

This is quite remarkable considering the short period of several weeks during which the system had been running prior to taking the samples. There were interesting results from both the upper end of the canal near the Restorer and the furthest downstream sampling point.

The highest number was downstream well below the Restorer, the bio‐filter and the Eco‐machine. The meaning of this is not yet clear. One explanation is that the Restorer has begun to clean up the canal in its upper reaches, but it is too early to come to any conclusion.

A second set of oil samples on was taken July 13th and again sent to Brown for analysis but we have not as yet fully analyzed the data.

What we do know is that the oil levels in the canal water have increased quite dramatically.

Heat may have played a role in this.

During the hot days of early July a larger than normal sheen of oil was observed entering the canal. However, the oil levels leaving the greenhouse remained low at 7,851 ng/l. This represents a 99% reduction in petroleum hydrocarbons from the canal water above the biofilter and the water leaving the Eco‐machine en route to the canal Restorer.

The Grafton project is funded until the fall of 2012.

It is important, however, that our work there does not end.

We are now seeking new sources of support. If our approach continues to prove itself our hope is to expand the project to include the more of the river and the adjacent canals from Worcester to Providence.

The facilities would serve as laboratories for both educating a generation of young people in the beneficial workings of applied ecology and in the rebirth of the river along the Blackstone Corridor.

End note:

Many people have helped in this project. They include people from the Town of Grafton, the US EPA, the MA DEP, the US Park Service, Massachusetts Audubon Society, Blackstone Headwaters Coalition, Clarke University, Brown University, the Fisherville Redevelopment Corporation, Sember Construction, Natural Landscape Design, John Todd Ecological Design Inc, Fungi Perfecti Inc, and Wastewater Alternatives Inc.

Special thanks go to Eugene Bernat.

Soil

July 13, 2010

Read: John’s editorial in Solutions.

John is increasingly coming to realize that the fate of atmospheric carbon, fresh water, agriculture, and human health and culture are all bound up with the fate of our soils.  Every time crops are harvested or soil is tilled, carbon is released into the air.

Human life on earth is sustained as much by soil as it is by water and air.  This is a fact made abundantly clear by Jim Richardson’s excellent photographs.

The story of China’s Loess plateau illustrates the deep implications of tending to our soils. Check out this excellent video here.

In a recent post on Architechts.org, Kevin Horne mentioned the potential application of an EcoMachine integrated into Boston’s Rose Kennedy Greenway.  His post touched on the concept of the park as infrastructure as well as the value of a warm public green space during the gray Boston winter.

I see great potential for EcoMachines integrated into the Greenway. Properly plumbed and located, EcoMachines could act as the city’s kidneys,  intercepting and treating polluted stormwater runoff, before it reaches the Charles River, Fens, or Boston Harbour.  These systems would be not only contemplative public spaces but also productive spaces.  A series of EcoMachines could easily provide Boston’s markets with a year round supply of fresh cut flowers. Cleaned effluent could be used to irrigate a tree farm as proposed by Erin Kelly.

For mosquito control how about  a series of sculptural towers (modified streetlights?), designed to attract nesting swallows.

Swallows Nesting On Bridge Columns in Pheonix AZ

Right of the bat I would like to say that 13 out of 13 Indigenous Grandmothers agree that the OCSL EcoMachine is, in fact, a healing space.  Can the same be said for municipal wastewater treatment?  I think not.

Jonathan dips a nitrate test strip at Omega

A few weeks ago Jonathan, myself, and the visiting Lauren Roth, left the pleasant sea-breezed Cape and traveled to the equally pleasant rolling hills of Rhinebeck, NY.  I had never before seen the eco-machine at Omega and was struck and excited by the health and vitality of the system.

Integral to the health of the system is the tinkering and attention of the operator.  At Omega, Chuck can tell simply by the surface foam and the look of the water how the system is operating.  He takes well-earned pride and satisfaction in the system’s smooth running.  For me, this is an often overlooked and unmentioned aspect of the EcoMachine.  In the ecological treatment of wastewater the human is not absent.  If anything when compared to conventional treatment, the human is more present.  In an EcoMachine the operator acts not simply as industrial laborer, opening valves and adding chemicals, but also as a gardener.  He is an ecologist observing the growth and change of the system over time, tending to it as it responds to the varying inputs of the seasons and of the facilities use.  In complex biological systems trained human intuition seems to be often as accurate as any test of TSS or nutrient content.  The systems aggregate health is not difficult to evaluate and for the most part need not be done in a lab.  Instead it is readily apparent in the growth of the new leaves, the movement of the water, and many other subtle clues.

Flower and Ground Cover at Omega

The system at Omega is healthy and well tended. In the Greenhouse the Calla Lilly and ground covers are growing vigorously.  In the constructed wetlands the Cattails have formed robust colonies. Scattered through-out the native shrubs and sedges, are huge Irises, and everywhere some strange thin plant has spread, competing even with the cattails for its place in the sun.  What is it what is its role? Is it a free loader in our treatment system out-competing other wetland species for space, or is it working, providing valuable filtration, uptaking nutrients, and contributing root mass surface area?

The mystery plant: Epilobium

Jonathan recognized the plant, thin leaved, closed purple flowers atop slender seed pods, as having hitchhiked in with the soft-stem bull rush.  He knew neither its name nor its function.  Pulling the plant carefully out of the gravel we compared its roots with those of the bulrush. The white roots of this volunteer were easily discernible from the red roots of the bulrush, they were extensive,  deep, thickly gripping the soil and gravel, a rich organic layer surrounded the root cluster.

Back in Woods Hole (thank you Roberta Clark and David Anderson)  we learned the name of this plant: Epilobium Coloratum.  Epilobium, also known as willow-herb is a common and widely distributed perennial wetland species.  Willow herb is a colonizer; it sends out many small airborne seeds and tends to be one of the first plants to grow in disturbed wetland environments.  At Omega the Epilobium will spread throughout the system. In its roots pockets of healthy soil microbiology will be established, as it dies and is replaced by hardier species, it will leave behind a source of readily accessible carbon which will be used in the fixing of nitrogen and the uptake of soluble phosphorous.

OCSL Grand Opening

August 24, 2009

The JTED team recently attended the grand opening of the Omega Center for Sustainable Living. Pictured below is the first public tour of the OCSL Eco-Machine in operation. The 13 foot deep lagoons were deliberately engineered to rise only to waist height. This element of the design allows for visitors to get close to the system and experience natural wastewater treatment as something that can be beautiful, silent, odorless, and effective.

Eco-Machine Tour

Eco-Machine Documentary

June 29, 2009

The Eco-Machine is the subject of filmmaker Kristine Alexander’s documentary that will be shown at the 2009 Woods Hole Film Festival. The film features Dr. Todd, as he narration of ecological solutions to global water issues. 

Dr. John Todd

Jonathan is excited to have been asked to serve as a founding member of the Scientific Advisory Board for Sky Vegetables. Jonathan’s relationship with this group began in December of 2008 at the Building Integrated Sustainable Agriculture Summit. He believes they bring an approach to food production that will be a cornerstone in the cities of the future.

 

Sky Vegetables’ mission statement is “To improve the health and nutrition of city populations by providing fresh, safe, transparent, affordable produce; and to provide new jobs and educational opportunities through the development of urban, sustainable agricultural closed-cycle rooftop farms.”

 

Check back soon for more posts on this topic.

 

sky-vegetables

 

Last Wednesday (Earth Day) JTED was onsite at the Omega Institute continuing our construction oversight.  Omega’s Executive Director, Skip Backus, worked with us to organize a group planting of the constructed wetlands. With over 50 volunteers throughout the day, 20,000 square feet of wetlands were planted with over 8,000 cattails and bulrush. We can’t thank those volunteers enough for their time and effort. 

Follow

Get every new post delivered to your Inbox.

Join 31 other followers